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Abstract. Among the many mathematical ranking systems putadish college football, the method used
by Wes Colley is notable for its elegance. It imes setting up a matrix system in a relativelyenway,
then solving it to determine a ranking. Howevke, €olley rankings are not particularly strong at
predicting the outcomes of future games. We dstlus reasons why ranking college football teams is
difficult, namely weak connections (as 120 teanthgday 11-14 games) and divergent strengths-of-
schedule. Then, we attempt to extend this methachprove the predictive quality, partially by apiplg
margin-of-victory and home-field advantage in aidagymanner. Each team's games are weighted
unequally, to emphasize the outcome of the mostiimhtive games. This extension of the Colley meétho
is developed in detail, and its predictive accurdigging a recent season is assessed.

Many algorithmic ranking systems in collegiate Aroan football publish their
results online each season. Kenneth Masseypares the resultf over one hundred
such system&ee [9]), andDavid Wilson’s sitg14] lists many rankings by category. A
variety of methods are used, and some are depeadermplex tools from statistics or
mathematics. For exampldassey’s rating§l0] use maximum likelihood estimation.

A few methods, including those Biichard Billingsley{3], are computed recursively, so
that each week’s ratings are a function of the iptes/week’s ratings and new results.
Some high-profile rankings, such as those of USAajooddsmakeieff Sagarirf12],

use methods that are not fully disclosed, for petpry reasons. Despite the different
approaches, nearly all ranking methods use the sande data set, the scores of games
played during the current season. A few also tisertatistics, such as yardage gained.
College football’'sBowl Championship SerigBCS), which matches top teams in
financially-lucrative postseason games, includingiaofficial national championship
game, chooses its teams using a hybrid rankingegtly including two human polls and
six computer rankinggb]. The use of victory margins in BCS-affiliatedmputer

rankings was prohibited following the 2001 seastingut of concern that coaches might
run up huge margins, violating good sportsmanship.

There are two opposing philosophies in ranking w&sh leading toetrodictive
andpredictive rankings. Retrodictive rankings aim to reflectsthaccurately the results
of the current season in hindsight (minimizinglations, cases of a lower-ranked team
defeating a higher-ranked one). Predictive rankiempt to identify the strongest
teams at the present, so as to forecast the winhegscoming contests. Most predictive
rankings use margin-of-victory and also considenédield advantage, both in previous
and future games. To achieve reasonable earlypseasults, predictive ranking
methods typically carry over data from the previsaason, perhaps with adjustments
made for returning or departing players and coaghiranges. Retrodictive rankings
start from scratch each season, so they are ntdsped until each team has played
several games. Jay ColemaNsV ranking[6, 7], designed to achieve optimal
retrodictive results, is superior to any other ragkn that category [9]. No predictive
ranking algorithm has consistently outperformedlthe Vegas oddsmakers [1], who
have a strong financial interest in accurately ssisg upcoming games. Many ranking
systems seek a balance of predictive and retredicpuality, attempting to give insight
into future contests while remaining faithful taspaesults.



Among the six Bowl Championship Series computekirags, theColley Matrix,
designed by astrophysicist Wes Colley, is unigGelley’s algorithm[8], rooted in linear
algebra, is elegant in its simplicity. His ranksraye relatively easy to reproduce, and
Colley’s method involves neither margin-of-victorgr home-field advantage. This
method isnot a strong predictd2], nor is it designed to be, raising the questd
whether it could be extended to create a predigigerithm based on linear algebra. In
such an attempt, we must accept losing the elegafnCelley’s original method, and will
need to use additional data, such as victory margia home-field advantage.

To extend Colley’s method in this way, we musttfusderstand how it works.
The method begins by rating each team using a mddifinning percentage, then
adjusts the ratings according to the quality ofagion a team has faced. Each team
effectively starts the season with a win and a, ltsavoid having undefeated teams
automatically at the top (and winless teams abtiteom) regardless of schedule strength.
All teams are placed in a fixed, arbitrary ordertlsat each row of a square matrix
systemAx = b relates to a particular team. Before any gamegplayedA is a diagonal
matrix with 2’s for all diagonal entries, abds a vector consisting of all ones, as shown
in (1). If we solve the system, we find thxat 0.5 for eaclp, agreeing with a winning
percentage of 0.5, from an implied 1-1 initial retoThus, all teams are considered
equal prior to the start of the season.
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To include the result of a game, we add one talthgonal element associated
with each of the teams involved, and subtract ool feach of the two off-diagonal
elements whose locations are coordinates are ginasither order) by the index numbers
of those two teams. Finally, we add one-half ®ehtry ofb associated with the
winning team, and subtract one-half from the enfrihe losing team. After all games
have been included, the nonzero entrie& are as follows:

a; = 2 + (number of games played by tegin #
aj = -1- (number of games between teana#d team #, fori # |

by = %- [2 + (wins by team j — (losses by tean ¥

For example, if team #3 defeats team #1 in theoseméirst game, we would
obtain the system in (2). The principle is tha& thting of team #3 minus that of team #1
should equal one-half, assuming equal schedulespanchanges to each team’s row
reflect such a condition Solving this system washdw that; = 0.375 ands = 0.625



(with all otherx; still 0.5), so team #3 is currently rated as tinergest team, while team
#1 is rated the weakest. This is logical, giveat the have no information regarding the
strength of any other teams. The strength-of-adleddequality reduces the difference

between the teams’ ratings to 0.625 — 0.375 = Or®fead of the original 0.5 difference.
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At any time, we can solv&x = b to determine the team rating veckpand rank
the teams according to thejrvalues, in descending order. For future gamesyadd
predict a team with a higher rating (frotnto defeat any with a lower rating.

One of the difficulties in algorithmic college fdal rankings is that there are
many teams (120 in the highest classification, atatal of over 700 NCAA teams), yet
each team plays relatively few games in a seagpitally 10-13. Of these games, 7-8
games are played within a conference, and non-camée opponents are often chosen
partially by geographic proximity. Most randomlyasen pairs of teams do not play one
another, but are connected only through chain@wincon opponents. By season’s end,
any two of the 120 teams can be connected by thréswer intermediate teams. (In
graph theory terms, this is equivalent to a grapmeter of four.) However, the early-
season lack of connectedness increases the difficitanking teams. College
basketball, despite having more teams, presentses ranking problem, because there
are more non-conference games and more interrdgiontests. By their design, some
methods handle such weakly-connected networksrlibtia others, and Colley notes that
the performance of his method is dependent onéigee@ of connectedness among the
teams [8]. While this cannot be completely resdlwgthout fundamentally changing the
model’s structure, we will attempt to compensatstfo

Another ranking issue is strength-of-schedule difféial, which largely arises
from conference affiliations, since most teams ptayghly two-thirds of their games
against league foes. Of the eleven conference®jar college football, three (the Sun
Belt, Mid-American, and Conference USA) are relelywveak. Over the last five
seasons, each of these leagues has won fewerrkean seven games against teams from
the BCS-affiliated conferences [13]. It is comniona team in such a conference to go
through an entire season without playing any natigiranked opponents, so even an
undefeated record might not be meaningful. Orother hand, teams in the Big 12 and
Southeastern Conference routinely play as manixas seven regular-season games
against consensus top-25 teams. The issue of "ehdifferences is not difficult to
address within the Colley framework.



We hope to extend the Colley model in a way thatrowes predictive accuracy.
We will leave much of the structure intact, buthaiter the coefficient changes made
with when including each new game result. The gkarare as follows:

* Include margin-of-victory

* Weight games unequally, depending both on margwieibry and the
expected result.

* Weight recent games more heavily.

» Start each season with teams having unequal ratiaged on results from the
previous season, to improve early-season predgtioumt diminish the effects
of the initial inequalities as more games are playe

* Quantify home-field advantage, for use in ratingsdd predictions.

While margin-of-victory is no longer used in the 8@nkings, it remains useful
as a predictive tool. A team that consistentlysaly substantial margins is likely to be
superior to one that wins by just a few pointsesalthere is a substantial difference in
strength-of-schedule. A similar argument can bdemagarding losing teams that are
soundly defeated compared with those that oftem ¢bsse games. Victory margins are
important, but we must choose carefully how bestst® them. Scoring a late touchdown
to increase a small lead is significant, but onteaan is far ahead, an additional score
becomes largely irrelevant. Thus, we need a dshing returns principle applied to
victory margins, obtained by using a sigmoidal (Gged) curve to determine the
margin-based output value for a particular game= WM use a cumulative normal
distribution function, translated to pass through origin, as shown in Figure 1.
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Figure 1: Output value m (to be added tab)), based on the outcome of a game,
under (left) the Colley system, and (right) a dimiishing-returns principle.

Some ranking systems that use margin-of-victoryasepa cap, often 21 or 28
points, the equivalent of 3 or 4 touchdowns, igngrany margin in excess of that cap,
and we will use a 21-point cap. This results farection with a range smaller than the
desired [-0.5, 0.5] range. One way to resolveigsge would be to multiply the capped
function by a constant to stretch it vertically.eWill take a different approach, inserting
the missing increment between the zero point (sspréng a tie game) and 1 point



values, as seen in Figure 2. The translations affaiddle ground in between a margin-
blind formula and a fully margin-based formula.
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Figure 2: Output value m using a 21-point cap on margin-of-victory,
before (left) and after (right) making a range-adjusting translation.

In college football, games in which one team isyvezavily favored (by 35 or
more points) are not unusual, due to the largeaditypbetween the best and worst teams.
Using the Las Vegas odds, there were fourteen gagtes in 2008 [11]. These games
may produce a no-win situation for the favored tesrder Colley’s system, leading to a
rating decrease regardless of the outcome, betlaestrength-of-schedule decrease can
outweigh any benefit gained from adding a victo@n the other side, a low-rated team
may be rewarded (with a rating increase) for plgyrtop opponent, regardless of how
badly they are beaten. While this may be reasenalthin some types of rating systems,
(as they may aim to show which teams have perfortimedest against good
competition) it is a weakness for predictive rating.ogically, if a heavily-favored strong
team wins easily over a weak opponent, then neid@n’s rating should change
significantly as a result, because no new inforamatvas gained. Thus, we use
differential weighting of games, based on both eigtand actual outcomes. After we
compute the new ratings, the expected outcomeroeganay change, so we re-weight
every game and re-compute the ratings. This leadsshift from direct solution (solving
a matrix system A=Db once in Colley’'s method) to iterative computaticgpeating steps
until we obtain convergence, when teams’ ratingbibze. To compute the weight given
to each game, we will apply the following principle

» Heavily favored teams that win by substantial masghould not be
penalized, so such games will have very small wisigh

* Any true upset (a game in which the losing teafavsred in hindsight) will
receive the highest possible weight.

* A heavily-favored team that wins a close game bellpenalized, but not as
much as if they had lost the game.

» Barring upsets, games between evenly-matched tasrthe most
informative, so they will be weighted more heavily.

* The function computing game weights from marginsusth be smooth, while
allowing a discontinuity at the point representinmargin of zero.



To follow these guidelines, we use a weight furrctivat decreases exponentially
with the product of the expected and actual margiashown in Figure 3, whenever the
favored team wins. Both the favored team and xipeeed margin will be determined in
hindsight, because of iterative computation.

For a variety of reasons, a team’s performanceimayove or decline during a
season, i.e. we will weight recent games more lheaVio determine the weight of a
game played weeks ago, we use the exponential decay forma", where 0 <o < 1.
Usinga = 0.95, we obtain time-based weights shown in ilgigy which are multiplied by
the margin-based weights to compute the weigh# fearticular game.
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Figure 3: Relative weight functionr for games won by the favored team
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Figure 4: Time-based weight functionw, using a 5% weekly decrease.

Just as every team starts a new season with adret0r0, regardless of the
previous season’s successes or failures, rankimgdd start fresh each year. In small,
well-connected groups such as the National Footlelfue, this is feasible, but in large,
poorly-connected pools of teams, it is unrealisiitiere may be few interregional games,



and those may occur only in the playoffs, too tatbe of predictive value. For this
reason, many predictive systems use the resutise@br more previous years as a
starting point for a new season’s rankings. Aserdata become available, the old
results are weighted less, and perhaps droppegkttier once all teams are minimally
connected. Using previous rankings as a startomgt gan improve predictive accuracy
early in the season. If the starting values atgphased out entirely, they may help in
predicting interregional games, particularly whentain regions have been historically
strong or weak but scheduling is mostly localiz&de will use the final ratings of the
previous season as a starting point for a new year will consider them equivalent to
two fully-weighted games, just as Colley in essestagts each team with a 1-1 record.
Just as current-season games are weighted 5%elessveek, we apply the same
damping to the initial rating weights.

Computation of the value of home-field advantaged¢easily be the subject of a
paper by itself. Some rating systems use a fixadevfor the number of points by which
a home team is improved, compared to playing oeuwral field. Others (such as
Sagarin’s rating§l2]) re-compute home-field advantage weekly dyitime season, either
as a universal constant or with a value for eaamteWe will compute a single value
based on previous seasons and use it throughaowta gear. While college football
teams rarely face an opponent twice during the ssason, they routinely play the same
team in consecutive years, with each team hostreggame. We will consider the
margins of games in such home-and-home seriegitoads a home-field advantage
constant. We sum the margins, from the home teperspective, in all such pairs of
games over two seasons, then divide by the totabeu of games considered. By
considering only home-and-home series, we elimihatee and away scheduling
inequalities, such as the practice of top collegarts paying weaker opponents to play at
the stronger team’s stadium with no return gamiee Afome-field advantage valbevas
approximately 3.70 points in major-college footlaler two recent seasons. Sitce
should not change substantially in a single yearywa consider it constant through a
season.

Putting together these ideas, we must compute dhges used to change the
matrix system when a game is added. First, tred fueighty given to the game is a
product of the relative weight(based on expected and actual outcome) and tisedba
weightw. The coefficient adjustmeat(applied tay) is a product of and the margin-
based game output valoe

y=rw,z=ym 3)

We can then make the changes shown in (4) to atémua game in which team #3
defeats team #1. In (4), entries denoted by “Uachanged.
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After solving the matrix system to obtain the rgtirectorx, we can determine
hypothetical margins of future (and past) games.dad this, we convert the values from
X; into ratings easily used for predictions. Thewasion formula is given in (5), where
c is a scaling factor (applied so that a one-paitfi¢ience in ratings will be equivalent to
a one-point predicted margin) aads the desired rating for an average team. Bagsed
data fitting experiments, we will uge= 60. While the value & does not affect the
predictive outcomes, we will uge= 100, keeping with common practice. Note that in
(5), we subtract 0.5, the rating of an average teetine Colley system.

R=a+c- (x—0.5) (5)
To predict the outcome of a game, we consideteams’ ratingsi, andR, (for
the home and visiting teams) given by (5). Untbgsgame is contested at a neutral site,
we add the home-field constdnt 3.70 points to the home team’s rating. After tthie

team with the higher rating will be predicted towand the difference between the
modified ratings is the predicted margin-of-victddy as seen in (6).

M=|Ry+h-R,| (6)

For highly mismatched teams, the formula will tygig overestimate the margin. A
team that is 70 points better than its opponeunigely to win by such a huge margin,
instead inserting reserve players and playing auaseely with a large lead. If the
predicted margiiM is greater than 21 points, we reduce it usindgraeional-exponent
formula given by (7). Based on data fitting, wiketa = 0.8.

M* = 21 + 14 - [(M — 20¥ — 1], ifM > 21 7)
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Figure 5: Adjustment of margin predictions which initially exceed 21 points.

The margin, possibly adjusted, is then roundeti¢anearest integer. Because tie games
are not possible in college football, a marginesfsl than one-half point will be rounded
up to one point instead of down to zero. In catireome rating systems (such as those
of the Las Vegas oddsmakers) allow a predicted marfgzero.



The weight assigned to a game depends parths@redicted outcome, so we
need an initial set of ratings as a starting poithile we could initially rate all teams
equally, we will instead begin with ratings carri@eer from the previous season. As we
obtain new ratings, the predicted outcomes of sgamees will change (and for others the
margin is altered without changing the predictedngr). These changes affect the
weights assigned to the games, changing the ratiggi®. So, rating computation is an
iterative process, in which ratings from one itemratre used to compute the game
weights for the next. We continue until we obteamvergence, when ratings remain
unchanged with additional iterations. Convergersigally takes only a few iterations.

The primary measure of a predictive rating systeguiality is the percentage of
games it correctly determines in advance; accuradgtermining margins is a secondary
criterion. The Prediction Trackd2] compares the results of dozens of rating syste
For the 2008 season, the system we describe dgrpeetlicted the winner of 74.3% of
games between two major-college (NCAA Division ISBeams. This compares
favorably with other systems, placing it in the {9 of all models. Prediction
percentages for the second half of the seasonsr@@ood measure, because many
ranking systems start from scratch each year, negunore data to make accurate
assessments. While more information is availaddler in the season, predictions become
more difficult because conference games and pasiedzowls are more often evenly-
matched contests. Not surprisingly, our predicpercentage was lower during the latter
half of the season, at 72.4%, but this still plaicethe top quarter of all ranking systems.
The final top 25 teams for the 2008 season, usimgrethod, are listed as the Appendix.

There are many algorithmic rankings in major agléootball, probably because
it has neither a playoff system nor an officialioaal champion. However, | also have a
strong interest in ranking high school footballnesa dating back to several years spent
teaching mathematics in a public high school. Raatngs and predictions for high
school football in North Carolina and Ohio, complby the same method discussed
here, are published weekly during the seasonwat.fantastic50.net

Some of the difficulties encountered in rankingegé football teams are more
apparent in those leagues. Ohio’s 700+ teams@aglonly ten regular-season games,
and North Carolina’s geography leads to heavilgliazed scheduling. These factors
substantially reduce connectedness among the tsantisat at season’s end, some pairs
of teams are connected only through lengthy chafimstermediate teams. Strength-of-
schedule differences can be enormous, as someudrge schools fielding three large
teams play only against local peers, while smdibst conferences may consist entirely
of teams that have barely enough players to fiakelteam. Obtaining scores of games
involving rural schools with no nearby daily newgpes can be a challenge. However,
high school football offers another interestingyang ground for mathematical ranking
systems. Many states use a computational systemneé kind to select and/or seed
playoff teams, but there are few predictive rankipgblished in a given state. Such
rankings offer a measuring stick for championskgnts in lower classifications if they
are unable to schedule games against the larg®iscbwers.
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Appendix — Top 25 ranking, at the end of the 2008ason, by this method
Records shown include only games against FBS (fdyrevision I-A) opponents.

1) Florida (12-1) 11) Boise State (11-1) 21) West Virginia (8-4)

2) Southern Cal (12-1) 12) TCU (10-2) 22) lowa (8-4)

3) Oklahoma (11-2) 13) Texas Tech (9-2) 23) Oklahoma State (8-4)
4) Texas (12-1) 14) Virginia Tech (9-4) 24) Boston College (8-5)
5) Penn State (10-2) 15) Mississippi (8-4) 25) LSU (7-5)

6) Ohio State (9-3) 16) Oregon State (9-4)

7) Utah (12-0) 17) Florida State (7-4)

8) Oregon (10-3) 18) Missouri (9-4)

9) Alabama (12-2) 19) California (9-4)

10) Georgia (9-3) 20) Arizona (8-5)
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